๋ณธ๋ฌธ ๋ฐ”๋กœ๊ฐ€๊ธฐ

Back-end/MongoDB

Introduction to Big Data

๋ฐ˜์‘ํ˜•

์ด ๊ธ€์€ ์ „๊ณต "๋น…๋ฐ์ดํ„ฐ์‹œ์Šคํ…œ" ๊ฐ•์˜ ๋‚ด์šฉ์„ ์ •๋ฆฌํ•œ ๊ธ€์ž…๋‹ˆ๋‹ค.

๋ฐ์ดํ„ฐ์˜ ์œ ํ˜•(Types of data)

Structured Data Unstructured Data
Can be displayed in rows, columns and relational databases Can not be displayed in rows, columns and relational databases
Numbers, dates, and strings Images, audio, video, word processing files, e-mails, spreadsheets
Requires less storage Requires more storage
Estimated 20% of enterprise data Estimated 80% of enterprise data

๋น…๋ฐ์ดํ„ฐ ์„ฑ์žฅ์˜ ์ด์œ (Reason of Big Data Growth)

  • Rapid advance in computer hardware
  • Rapid advance in social networking

๋น…๋ฐ์ดํ„ฐ์˜ 4๊ฐ€์ง€ V(The FOUR V’s of Big Data)

  • Volume - Scale of Data
  • Velocity - Analysis of streaming data
  • Variety - Different forms of data
  • Veracity - Uncertainty of data

๋น…๋ฐ์ดํ„ฐ ๋ถ„์„์ด๋ž€ (What is Big Data Analytics)

  • Big Data analytics is a process used to extract meaningful insights, such as hidden patterns, unknown correlation, market trends, customer preferences
  • ⇒ ๋น…๋ฐ์ดํ„ฐ ๋ถ„์„์€ ์ƒ๊ด€๊ด€๊ณ„, ์‹œ์žฅ ํŠธ๋ Œ๋“œ, ๊ณ ๊ฐ ์„ ํ˜ธ๋„์™€ ๊ฐ™์€ ์ˆจ๊ฒจ์ง„ ํŒจํ„ด๊ฐ™์€ ์˜๋ฏธ์žˆ๋Š” insight๋ฅผ ์ถ”์ถœํ•˜๋Š” ๊ณผ์ •์ด๋‹ค.
๋ฐ˜์‘ํ˜•